
A DESCRIPTION OF THE CIDR SYSTEM AS USED FOR TDT-2
Dragomir R. Radev∗ Vasileios Hatzivassiloglou Kathleen R. McKeown

Department of Computer Science
450 CS Building

Columbia University
1214 Amsterdam Avenue, Mailcode 0401

New York, NY 10027

{radev ,vh ,kathy }@cs.columbia.edu

ABSTRACT

We describe several experimental parameters and a parallelization
technique used in our online document clustering system, CIDR.
These modifications were introduced into CIDR to reduce the run-
ning time so that incoming documents be clustered in almost real
time. We discuss how several of these parameters are justified on
linguistic grounds and report preliminary quantitative results on the
effects that these parameters have on speed and accuracy.

1. INTRODUCTION

We report our experience with the development and testing of CIDR,
a system for the automated placement of text documents into topical
clusters. Our focus in CIDR is somewhat unusual. We have started
from the assumption that our clustering system should aim for max-
imal efficiency, so that it will be able to classify tens of thousands of
documents in real time. This puts a premium on operational speed
rather than classification accuracy, and raises a number of interesting
research questions, namely, what modifications to a standard docu-
ment clustering approach offer significant speedup gains and what
penalty in classification accuracy each of them incurs. We offer pre-
liminary answers to these questions in this paper.

Our development of CIDR was constrained by limited availability
of time and manpower resources. We did not participate in the pilot
TDT study in 1997, and did not become officially involved in TDT-2
until November 1998. As a result, we were not able to participate in
the formative TDT workshops, and we submitted our first results on
the development subset of the TDT corpus only days before we sub-
mitted the official evaluation run. Unlike other competitors, CIDR is
the product of essentially a single implementor, spanning a develop-
ment period of six person-weeks. Thus, we view our current system
as less of a finished competitive product and more of a prototype
that embodies a basic clustering technique and allows us to explore
modifications to it in order to investigate speed-accuracy tradeoffs.
We have designed CIDR in a modular way that facilitates the re-
placement of components for rapid prototyping. We are particularly
interested in augmenting CIDR with language-informed techniques
and knowledge sources, a topic we return to in the last section of this
paper.

∗The author’s current address is IBM T. J. Watson Research Center, 30
Saw Mill River Road, Hawthorne, NY 10532.

2. EXPERIMENTAL PARAMETERS AND
SYSTEM DESCRIPTION

CIDR uses at its core a fairly standard single-pass clustering al-
gorithm [1] with a deferral of zero. The innovative elements of
our work lie in modifications to that algorithm that offer significant
speed gains without sacrificing much accuracy. We describe first
the general algorithm, and then discuss five experimental parame-
ters and other modifications that were introduced for the purpose of
reducing running time.

Our algorithm takes one article at a time and assigns it to the clus-
ter that looks most similar to it. Matching between a new document
and existing clusters is based on a comparison between the new doc-
ument and the centroids of the existing clusters. Each document is
represented as a vector of word frequencies modified by inverse doc-
ument frequencies (a TF*IDF product, as is standard in information
retrieval [5]). Centroids of clusters are represented in a similar man-
ner but the TF*IDF values associated with them are the weighted
averages of the corresponding TF*IDF values of the documents al-
ready assigned to that cluster. The algorithm initially places the first
document by itself in the first cluster, and this single cluster makes
the initial working collection of clusters. As new documents are
processed, they are compared to the centroids of the clusters in the
working collection and are either placed in the most similar exist-
ing cluster or in a newly created cluster, consisting of just one new
document. Similarity between a document and a centroid is mea-
sured by the cosine (normalized inner product) of the correspond-
ing TF*IDF vectors, and a predetermined cutoff threshold specifies
when the similarity is unacceptably low and a new cluster should be
created instead.

In order to satisfy the on-line restriction, we estimate the inverse
document frequencies from a separate collection, rather than the ar-
ticles we are clustering. We use the documents in the TDT collection
between January and April 1998 for this purpose. In addition, we in-
troduce the following modifications to the algorithm:

• We ignore all but the first DECAYTHRESHOLD (typically
50–200) words in input documents. This speeds up the con-
struction of the TF*IDF vectors for documents, and also hope-
fully focuses the comparisons to the most important words for
each document. Earlier summarization research (see for exam-
ple [2]) indicates that the first paragraph of a document typi-
cally contains the most salient points, at least for news articles.

• We ignore any words in the documents with inverse docu-



ment frequencies (IDF) less than IDFTHRESHOLD (typi-
cally around 3), since such words are not likely to affect the
comparisons significantly. This significantly reduces the size
of the vector representations for articles and clusters.

• In order to speed up the comparisons between cluster cen-
troids and documents, we only keep the most important words
for each centroid. This is accomplished by imposing a max-
imum number of words for each centroid (KEEPWORDS);
the words with the highest TF*IDF values are selected for this
set. A second experimental parameter, KEEPTHRESHOLD,
selects additional words that are included in the centroid, on
top of the fixed number specified by KEEPWORDS, if their
individual TF*IDF values meet or exceed that threshold. Typ-
ical values are 10–20 for KEEPWORDS and around 3 for
KEEP THRESHOLD, although experiments have indicated
that many times even three or four words are sufficient to ac-
curately describe the cluster. Three example cluster centroids
are shown below, demonstrating that ten (and sometimes three)
words give a clear picture of what each cluster is about:

– CLUSTER00001 (90 documents): [grand 1.16, jury
1.07, whitewater 1.00, mcdougal 0.76, susan 0.43, tes-
tify 0.38, privilege 0.26, contempt 0.16, ewing 0.13,
smaltz 0.07]

– CLUSTER00008 (113 documents): [space 1.98, shut-
tle 1.17, station 0.75, nasa 0.51, columbia 0.37, mis-
sion 0.33, mir 0.30, astronauts 0.14, steering 0.11, safely
0.04]

– CLUSTER00026 (10 documents): [universe 1.50, ex-
pansion 1.00, bang 0.90]

• In addition to the parameters mentioned above, a fifth parame-
ter, SIM THRESHOLD, controls when a new cluster is cre-
ated. Low values for this parameter result in a more fine-
grained separation of the input documents. We have found that
a value around 0.1 offers a good compromise between preci-
sion and recall (or false positives and misses).

3. PARALLELIZED VERSION
We have also experimented with a quasi-parallel version of the se-
quential algorithm described above. In this parallel model, we make
a distinction between a designated ”main processor” andk ”auxil-
iary processors”. The main processor takes the firstm articles (typ-
ically one quarter to one third of the total) and clusters them us-
ing the techniques of the previous section. In this way, centroids of
C(m) clusters are established. The main idea behind parallelization
is that these profiles do not change significantly as new articles are
added to the clusters, although some new clusters will be formed.
For example, Figures 1 and 2 show two sample cluster centroids af-
ter 10,000 documents are processed, and after all 22,443 documents
are processed, indicating little change to the centroids. The auxiliary
processors use this fixed collection ofC(m) clusters as their set of
working clusters, and either assign the remaining documents to these
clusters or set them aside as too different from the existing clusters.
In a final pass, the main processor reassigns the documents that have
been set aside during the parallel phase, creating new clusters as
needed. To observe the on-line restriction, auxiliary processors do
not actually assign documents to clusters or modify centroids. They
only store their assignment recommendations in a “hint” file. The
documents are assigned to clusters, in sequential order, by the main
processor during the final phase.

word score word score
suharto 2.48 suharto 2.61
jakarta 0.58 jakarta 0.58
habibie 0.47 habibie 0.53
students 0.45 students 0.43
student 0.22 student 0.21
protesters 0.20 protesters 0.19
asean 0.11 asean 0.10
campuses 0.05 campuses 0.04
geertz 0.04 geertz 0.04
medan 0.04 medan 0.04

Figure 1: Centroid for cluster 44 (the two scores are after 10,000
documents (left) and all 22,443 documents (right)).

word score word score
microsoft 3.31 microsoft 3.24
justice 1.06 windows 0.98
department 1.01 justice 0.93
windows 0.90 department 0.88
corp 0.60 corp 0.61
software 0.51 software 0.57
ellison 0.09 ellison 0.07
hatch 0.06 hatch 0.06
netscape 0.05 netscape 0.04
metcalfe 0.03 metcalfe 0.03

Figure 2: Centroid for cluster 62 (the two scores are after 10,000
documents (left) and all 22,443 documents (right)).

0 C(P) C(N)
0

P

P+D

P+2*D

N−D

N

C = Number of clusters

N
 =

 N
um

be
r 

of
 d

oc
um

en
ts

A

B C

slice k

slice 2

slice 1
← C(P)

← C(N)

x

x

Figure 3: Parallelization diagram. The two axes are not drawn to the
same scale, but the area under the curve and the positions of labeled
points on the two axes correspond to real data.

Figure 3 indicates the gains in run-time when running the parallel
version of the algorithm. The main processor operates on the curve
C(N). It starts at the origin and moves down and to the right. The
figure is drawn in a way such that the area under the curve is equal
to the number of comparisons between documents and cluster cen-
troids. At the beginning, there are only a few clusters, so fewer
comparisons are required to classify a document. Towards the end
of the run, many clusters exist and at that stage, more comparisons
are required. With no parallelization, the main processor would have
to take time proportional to the total area under the curve in Figure 3.



We introduce a number of documents,P , chosen in a way such that
a reasonable number of clusters,C(P ), have already been created.
The role of the auxiliary processors is to compare documents num-
beredP + 1 and higher with all clusters in the range1 . . . C(P ).
When this task is completed, the main processor re-examines these
assignments. For each documentd (d > P ), the main processor
checks whether the similarity between documentd and its assigned
cluster is still above the established threshold. If it is, documentd
is immediately added to clusterCd. If, however, the centroid for
clusterCd has changed in such a way that the similarity betweend
andCd is now below the threshold, the main processor comparesd
against all existing clusters before making the final placement deci-
sion.

Clustering, and especially on-line clustering, is an inherently non-
parallel operation, so making the decisions in parallel is bound to
introduce some additional errors. By analyzing the results of this
process, we have found that 78% of the cluster assignment decisions
made during the parallel phase are the same as if the full sequential
model were employed, and that only 5% of the documents examined
by the auxiliary processors are set aside for the final phase. With ten
auxiliary processors, the parallelized version is at least three times
faster in our experiments. This comes at a cost of a potentially 22%
higher error rate, which can be a defensible compromise.

4. RESULTS
To select the values of the input parameters, we ran two experi-
ments using parts of the development (dev-test) corpus (we chose
the 3,851 articles included in the sample index file from the ”ex-
amples” subdirectory of the TDT distribution). We ran our system
on this small corpus on up to 13 machines at the same time, then
we measured its performance using the master tables included on
the TDT CD-ROM. In this way, we selected our first approximation
of the best values for the four parameters SIMTHRESHOLD, DE-
CAY THRESHOLD, IDFTHRESHOLD, and KEEPWORDS. Pa-
rameter KEEPTHRESHOLD was set equal to IDFTHRESHOLD
in our experiments. Table 1 lists several choices of parameters and
the corresponding scores obtained during this training phase.

This experiment led to the selection of the following combina-
tion of parameters, which we used for the official submission:
SIM THRESHOLD = 0.1, DECAYTHRESHOLD = 100 words,
IDF THRESHOLD = 3, and KEEPWORDS = 10. They gave a
story-weighted average detection cost of 0.0089 on our internal set
(without parallelization), and, as we found later, 0.0095 (using par-
allelization) and 0.0077 (without parallelization) on the official test
set.

After we sent out the official submission, we continued experiment-
ing with the input parameters, and we selected two more parameter
sets. Our later experiments offer a significant improvement on av-
erage cost detection (0.0051–0.0068, measured on our internal test
set), as we were able to better tune the clustering parameters. We
submitted the results from these two selected combinations of pa-
rameters, produced with the non-parallel version of our algorithm,
as contrasting submissions. We also submitted as a contrasting sub-
mission the results obtained when our initial set of parameters (used
for the official results) was run with the non-parallel version of the
algorithm (the parallel version takes 27 hours on the evaluation cor-
pus, versus 73 hours for the non-parallel version, on a Sun Ultra-
Sparc 2/300). Table 2 summarizes our submitted runs, while Fig-
ure 4 shows the miss–false alarm rate graph for one of these runs.

SIM DECAY IDF KEEP
Story Weighted

P(miss) P(fa) Cdetect

0.01 100 3 10 0.9643 0.0038 0.0230
0.03 100 3 10 0.8214 0.0063 0.0226
0.02 100 3 20 0.8571 0.0038 0.0208
0.02 1000 3 10 0.9286 0.0017 0.0202
0.02 100 8 30 0.9643 0.0008 0.0201
0.02 100 3 8 0.9643 0.0006 0.0199
0.02 50 3 10 0.6071 0.0044 0.0164
0.02 100 2 10 0.6800 0.0026 0.0162
0.02 100 3 10 0.4900 0.0061 0.0158
0.02 100 1 50 0.4100 0.0054 0.0135
0.05 100 3 5 0.4286 0.0048 0.0133
0.05 100 3 15 0.5357 0.0025 0.0132
0.05 100 4 10 0.5000 0.0031 0.0131
0.02 100 3 1 0.3600 0.0048 0.0119
0.02 100 8 10 0.4500 0.0023 0.0113
0.25 100 3 10 0.5357 0.0004 0.0111
0.20 100 4 10 0.5307 0.0004 0.0111
0.06 100 3 10 0.3929 0.0027 0.0105
0.05 100 3 10 0.4000 0.0025 0.0105
0.05 100 3 30 0.3200 0.0040 0.0103
0.09 100 3 10 0.4000 0.0014 0.0094
0.15 100 3 10 0.4286 0.0006 0.0092
0.10 100 3 5 0.4000 0.0011 0.0091
0.20 100 3 10 0.4286 0.0004 0.0090
0.13 100 3 10 0.4286 0.0004 0.0090
0.10 100 3 10 0.3800 0.0014 0.0090
0.10 100 3 15 0.3800 0.0010 0.0086
0.14 100 3 10 0.4000 0.0001 0.0081
0.10 100 4 10 0.3600 0.0009 0.0081
0.10 67 3 10 0.3100 0.0018 0.0080
0.12 100 3 10 0.3500 0.0007 0.0077
0.11 100 3 10 0.3500 0.0007 0.0077
0.08 100 3 10 0.3100 0.0014 0.0076
0.10 200 3 10 0.2500 0.0024 0.0073
0.10 100 3 20 0.3100 0.0010 0.0072
0.10 50 3 10 0.2400 0.0021 0.0068
0.10 100 2 10 0.1900 0.0013 0.0051

Table 1: Parameters (KEEP refers to KEEPWORDS) and corre-
sponding scores for several training runs, listed in increasing order
of performance. Lines in bold indicate runs that are included in the
official evaluation.

5. CONCLUSION AND FUTURE
DIRECTIONS

We have explored several ways to cut down the running time of text
clustering algorithms without a disproportionate penalty on the ac-
curacy of cluster assignments. Some of these not only offer a speed
benefit but also help focus the similarity measure to the most impor-
tant part of a document or the core elements of a cluster, thus im-
proving performance over the unmodified version of the same clus-
tering algorithm.

CIDR was inspired by our work on document grouping and sum-
marization within an NSF STIMULATE grant. A major character-
istic of our approach on that task is to complement information re-
trieval techniques with shallow text analysis, so that the former are
informed by linguistic knowledge. We intend to introduce such lin-
guistic elements into the comparisons performed by CIDR, and we



Run Parallelization? SIM DECAY IDF KEEP
Story Weighted Topic Weighted

P(miss) P(fa) Cdetect P(miss) P(fa) Cdetect

1 yes 0.1 100 3 10 0.3861 0.0018 0.0095 0.3309 0.0018 0.0084
2 no 0.1 100 3 10 0.3164 0.0014 0.0077 0.3139 0.0014 0.0077
3 no 0.1 100 2 10 0.3178 0.0014 0.0077 0.2905 0.0014 0.0072
4 no 0.1 200 3 10 0.5045 0.0014 0.0114 0.3201 0.0014 0.0077

Table 2: Official evaluation of CIDR.

1

2

5

10

20

40

60

80

90

.01.02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
i
s
s
 
p
r
o
b
a
b
i
l
i
t
y
 
(
i
n
 
%
)

False Alarms probability (in %)

CIDR1_boundary_DEF=10.dir/det_nwt+asr.sys

Random Performance
CIDR cluster score cloud
CIDR topic weighted score

Figure 4: Scatterplot of miss rate versus false alarm rate for
one variant of CIDR on the official test set. The corresponding
parameters for this run were SIMTHRESHOLD=0.1, DECAY
THRESHOLD=100, IDFTHRESHOLD=KEEPTHRESHOLD=3,
KEEP WORDS=10, and no parallelization.

have started doing so by already weighing likely proper nouns (cap-
italized words within a context of mixed case text) twice as much as
their TF*IDF value would indicate. We will extend this approach by
giving privileged status to elements of a document such as location,
time period, and major named participants. We will also explore the
possible use of external knowledge sources, such as the CIA Fact-
Book and the database of named entities collected by our Profile
tool [3], to automatically identify the elements within each event
that should be given priority during matching.

We are also interested in exploring cluster centroid stability over the
course of an event and use it for detecting sub-events. This idea is
related to our work on summary generation from multiple articles.

ACKNOWLEDGMENTS
This material is partly based upon work supported by the National
Science Foundation under Grants No. IRI-96-19124 and IRI-96-
18797. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

The authors are grateful to Luis Gravano for fruitful discussions and
to Jonathan Fiscus for all the help during the evaluation.

References
1. William B. Frakes and Ricardo Baeza-Yates.Information Re-

trieval: Data Structures and Algorithms. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1992.

2. Chin-Yew Lin and Eduard Hovy. “Identifying Topics by Po-
sition”. In Proceedings of the 5th ACL Conference on Ap-
plied Natural Language Processing, pp. 283–290, Washing-
ton, D.C., April 1997.

3. Dragomir R. Radev. “Learning Correlations Between Linguis-
tic Indicators and Semantic Constraints: Reuse of Context-
Dependent Descriptions of Entities”. InProceedings of the
Joint 17th International Conference on Computational Lin-
guistics and 36th Annual Meeting of the Association for Com-
putational Linguistics (COLING-ACL’98), Montreal, Canada,
August 1998.

4. Dragomir R. Radev and Kathleen R. McKeown. “Generat-
ing Natural Language Summaries From Multiple On-Line
Sources”.Computational Linguistics, 24(3):469–500, Septem-
ber 1998.

5. G. Salton and C. Buckley. “Term Weighting Approaches in
Automatic Text Retrieval”. InInformation Processing and
Management, 25(5):513–523, 1988.


